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The principles used with the bilocal photon are applied to the analysis of 
trilocal structures. From the trilocal wave equation, and the phase-space 
boundary condition (that the structure float on a Fermi sea filling the vacuum), 
a secular equation is obtained, an eighth-order polynomial in the energy of the 
structure. Requiring that the structure move as a particle, with w2=k2+m 2, 
provides explicit expressions for two auxiliary parameters, h and #, to be used 
later in an expansion of the wave function. 

1. I N T R O D U C T I O N  

The  basic  concepts  to be  used  here  have  been  discussed in  some deta i l  
in a previous  ar t ic le  (Clapp,  1980). I t  is pos tu l a t ed  that  there  exists a single 
pr imi t ive  field, 4, f rom which all  par t ic les  and  observab le  f ields a re  to be  
buil t .  The  proper t ies  of ~ are  to be  infer red  f rom its singleness.  

The  pr imi t ive  field ~ is a massless f e rmion  field wi th  a o spin  of 
one-half .  The  f ield also has a ~- spin of one-hal f ,  to speci fy  ei ther  r ight-  
h a n d e d  (z~ = + 1) or  l e f t -handed  ( ~  = -  1) helicity.  Thus  there are  four  

spin possibi l i t ies  for  a pr imi t ive  quantum.  In  genera l  there c a n  be  as m a n y  
as four  quan ta  at  one po in t  in space,  the necessary  an t i symmet r i za t i on  
be ing  achieved via the two k inds  of spin. 

In  the  previous  article,  it was found  tha t  the vacuum needs  to be  a 
F e r m i  sea, bu t  a F e r m i  sea of a pa r t i cu la r  character ,  in which  the openness  
of the sea could  be preserved  on ly  b y  the requ i rement  tha t  a q u a n t u m  in 
the sea descr ibe  a pa i r  of waves,  no t  jus t  one  wave.  In  the  v a c u u m  sea, 
therefore,  there can,  at  one  po in t  in space,  be  at  mos t  two pr imi t ive  quanta ,  
not  four. 

Structures  represen t ing  e l emen ta ry  par t ic les  are  s t and ing-wave  sys- 
tems f loat ing on  the v a c u u m  sea. The  outer  por t ions  of a s t ruc ture  mus t  
resolve into  a c o m b i n a t i o n  of  incoming  a n d  ou tgo ing  pr imi t ive  waves  
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whose character permits this combination to merge into the surface of the 
vacuum sea. As long as this phase-space boundary condition is met, the 
inner details of the structure can be very complicated and involve many 
primitive quanta. 

The previous article examined a particular structure, a two-quantum 
structure in which the two structural quanta had opposite z spin. This 
permitted the inclusion in the wave function of terms in which the two o 
spins were parallel. The structure examined had a total internal angular 
momentum of J =  1, and moved as a massless particle at the velocity c. 
Parameters were chosen so that there were only two polarizations (rather 
than three). It was possible to define field quantities that resembled electric 
and magnetic field vectors and satisfied the vacuum Maxwell equations. 
This two-quantum structure is thus a reasonable candidate for a bilocal 
photon. 

From a computationally pragmatic point of view, the structure that 
comes next is a trilocal structure with J =  1/2. At the center of this 
structure, we can have all three quanta occupying the same point in space, 
but antisymmetry then requires that two of the three quanta have opposite 
"r spin and parallel o spin. Such a pair of quanta, as part of a larger 
structure, could play the role of an internalized attached photon, contribut- 
ing the electric and magnetic fields that accompany a charged particle such 
as the observed electron and muon. 

A structure representing a charged lepton should move through space 
satisfying the relativistic equation which relates its energy, mass, and 
momentum. As will be seen, this requirement places restrictions on a 
trilocal structure, and by extension on structures formed from more than 
three primitive quanta. 

As applied to the trilocal system, the wave equations (one centroid- 
time equation and two relative-time equations) and the boundary condi- 
tion lead to matrix equations of infinite size, but the imposition of 
auxiliary conditions, obtained through the use of operators commuting 
with the wave equations, reduces the infinite matrix equations to finite size. 
The restrictions obtained from the secular equation then limit the eigenval- 
ues of those auxiliary operators. 

There are three wave equations for the trilocal system, the familiar 
centroid-time wave equation and two unfamiliar relative-time equations. 
The trilocal wave function must satisfy all three. By extension, an N-quan- 
tum structure will have N wave equations for the N-local wave function to 
satisfy, and this wave function will contain a functional dependence upon 
( N - 1 )  relative-time variables. This dependence is necessary if the wave 
function is to be fully relativistic. 

Among the operators commuting with the wave equations are helicity 
operators, products of the angular momentum J, and the internal and 
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external momentum vectors. These will be found to aid in sorting the 
trilocal solutions, and by extension the N-local solutions. 

When a complete set of commuting operators has been assembled, 
and a wave function is required to be an eigenfunction of all of the 
operators in the set, the result is the limitation of the eigenvalues of those 
operators to certain discrete sets, and in particular the limitation of the rest 
mass to certain explicit magnitudes. These are then the particle masses 
obtained from the theory. 

2. TRILOCAL WAVE EQUATIONS 

We will require that the trilocal wave function, 'I'(1,2,3), should 
satisfy the three (truncated) wave equations 

1 O 1 ] 
O= ~c ~ +-7 ~' '~r' 'V' xi,(1,2,3) (2.1a) 

1 O 1 ] 
O= To ~ +-7 ~ ' 7 2  ~(1,2,3) (2.1b) 

1 O 1 ] 
0=  ic  ~ 3  + 7T3~O3"V3 ~(1,2,3) (2.1c) 

which correspond to equations (7.1) of the previous article (Clapp, 1980). 
Centroid and relative coordinates are introduced through 

R =  (r1+r2+r3)/3,  T = ( t l + t 2 + t 3 ) / 3  

r = (2r 1 - r 2 -  r3)/2, t r = (2t 1 - t 2 -  t3)/2 (2.2) 

p = (r 2 -  r3), tp = (t 2 -  t3) 

We will also need 

O O O O 

O 2 O 1 0  1 0  
Ot r - 3  Ot I 3 Ot 2 3 Ot 3 (2.3) 

0 1 0 1 0 
Otp 2 Ot 2 2 Ot 3 
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as well as 

Clapp et ai. 

V l ' =  3 V R  "~- V r 

1 1 
r E =  ~ V  R - -  ~Vr'~- Vp 

1 1 
V 3 - -  ~ V  R - -  ~-V r --  Vp 

(2.4) 

We  will have  cons iderable  use for  the cyclic representa t ion  of the 
three- i tem pe rmuta t ion  group.  Specifically, we will need to use the two 
complex  cube roots  of  unity, which are 

~0 = - 1//2 + i31/2//2 (2.5a) 

~2 = _ 1//2 _ i31/2//2 (2.5b) 

Using these, we can  define cyclic internal  gradients  by  

V + = V 1 + 60V2-1- w2V3 ~-" 3 Vr-~- i31/2V0 

3 V-- = V 1 "Jr" 602V2"+" ( o r  3 = ~ V  r -- i31/2Vo 

(2.6a) 

(2.6b) 

Similar cyclic t ime derivatives can  be  def ined by  

O + 3 3 0 3 O 3 (2.7a) 
0~- - Ot 1 +t~ +(02 0t 3 = 2 ~---~r + i31 /2  0to 

O- 0 ~ O 3 O i31/2 ~ (2.7b) 
0--~ = Ot 1 + 0)2 + oo Ot--~ = 2 Ot r Ot. 

The  wave equat ions (2.1) can  now be  replaced b y  

1 0 1 
O= i - c - ~  + -~  (~ ' l~r l+ ' r2~r2+r  

1 
+ 37 (*~*, + , o~ , '~  +'~3~*~)" v § 

l l + " ~  ('rl~.ff I + oYr2~.ff 2 + (.02"/'3~.ff3) �9 V - xIt(1,2, 3)  (2.8a) 
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0-- i c T  + ('l~al+~2~'72+'3~)'v§ 

1 

+ 1 (Tl~O" 1 + OYT2~ff 2 + 6021"3~ff3)" VRI*(1,2,3 ) (2.8b) 

[ , 5  1 O= ic  + - ~  (~'lf~l + 1"2f~ + 1"3~~ V-  

1 2 
+ ~-~ (TI~-O" 1 "1- 60 T2~.O" 2 + 0Yr3~O'3)" VR 

1 2 1 , (1 ,2 ,3 )  (2.8c) 

We will assume now that the centroid motion has the form of a plane 
,wave, which we can factor out through the substitution 

* (  1,2, 3) = qb(1,2, 3)exp(ixk. R - i~wcT)  (2.9) 

The reduced wave function gp(1,2,3) then satisfies three wave equations 
similar to (2.8), but with the replacements 

1 3 1 1 
ic OT - -~ -  ~cw' ~ i  VR--->3 Kk (2.10) 

We will require that the trilocal wave function satisfy a phase-space 
boundary condition, of the form given earlier in equation (7.9c) of Clapp 
(1980). In terms of the differential operators (2.4) and (2.6) above, this 
boundary condition can be written as 

1 2 -- 3tr VI2+ V22+ V3 2 -  ~V R 

= ~ Vr2+ 2Vp 2= 2 (V+-V- )  (2.11) 

3. AUXILIARY CONDITIONS 

In the analysis of the bilocal photon structure (Clapp, 1980), we relied 
strongly on an operator Qx which commuted with the Hamiltonian and 
could therefore be separately specified in the course of sorting out the 
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solutions to the wave equations. There are similar commuting operators in 
the trilocal analysis. 

First we can examine (~-l~ri-Vl), which appears as a term in the 
Hamiltonians and commutes with each. Its square, V12, will also commute. 
Similarly will V22 and 732. Comparison of these three squares shows that 
they can be written as 

V12=(SRW S -  + S + ) / 9  (3.1a) 

Vz2= (SR + u S  - +w2S + ) / 9  (3.1b) 

V32= (S  R +wZs - + ~oS + ) / 9  (3.1c) 

where 

S R = VR 2 + 2V +- V-  = - x2(k 2 + 9) (3.2a) 

in which we have used (2.10) and (2.11), and where 

S -  --(V+)2+2VR" V - (3.2b) 

S + = (V-)2+2VR.  V + (3.2c) 

The operators S - and S + are not individually suitable candidates for 
conserved operators of the trilocal system, since they are modified by 
permutations among the three quanta. [S R is not so modified, and is given 
an eigenvalue, as shown in (3.2a).] However, the product of S -  and S + is 
invariant under permutations, and can be given an eigenvalue as defined 
by 

S - S  + = (81/4)  x4X 2 (3.3) 

There is another combination of S -  and S + which is similarly 
invariant under permutations, and can be given an eigenvalue by 

(S  -)3 + (S +)3 = (729/4)•6X3 cos(3/1) (3.4) 

in which the parameter )t is the same one that appears in (3.3), and the 
parameter /z is the independent parameter introduced by (3.4). Neither 
parameter has been limited, up to this point in the analysis, but both will 
be limited by what follows. 
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4. SECULAR EQUATION 

In the bilocal photon analysis, a secular equation, equation (14.8) of 
Clapp (1980), was obtained from an explicit secular determinant. An 
equivalent secular equation could have been obtained through direct 
operations upon the bilocal Hamiltonian. For the tritocal analysis, it will 
be convenient to use the direct procedure. 

From (2.8a) and (2.10) we can write the operator equation 

(ixw) = %ftr 1.171 + r2~ %- 172 + "/'3~'11r3" 173 (4.1) 

Examining the first few powers of this operator, we can obtain the identity 

8(i~w) ('rl~.O" 1 �9 V 1)(r2~.0"2- 172)(r3~'~ 173) = (ixw) 4 -- 2(i~w)2( V l = + 722 + V32) 

--[.- ( V 12 -or- V 22 -.[.- V 32) 2 

- 4(V 12722 "at" 1722732 + ~732V 12) 

(4.2) 

Squaring both sides, and substituting from (3.1)-(3.4), we obtain the 
secular equation 

O=w84w6(k2+9) 4 I- 1 0 .  2 + w [-~-ff(k +9)2+6X 2] 

4 + w2[ - 72~829 (k2 +9)3 + ~( k2 + 9)~2 +16~3 cos(31x) ] 

+ [  1_~ (k 2 + 9)4 _ -92 (k2+9)2X2+ 92~4 ] (4.3) 

We can anticipate that (4.3) is a secular determinant that might appear 
later in an explicit algebraic solution of a matrix version of the wave 
equation (2.8a). 

If the trilocal structure is to represent an elementary particle with rest 
mass m (in units of ~), then we will require that w z and k 2 satisfy 

O=w2-k2~m 2 (4.4) 

and (4.4) must accordingly be a factor of (4.3), if (4.3) is to describe a 
structure which moves as a particle. This relativistic requirement cannot be 
met if X and/z are arbitrary. If we substitute (k 2 + m 2) for w 2 in (4.3), then 
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the result should be zero for all choices of the squared m o m e n t u m  k 2. 
F r o m  this we can derive the fol lowing condit ions on A and/~:  

are 

~2 = (9--  m2)(9 + 7m 2 + 8k2) /81  (4.5a) 

~3 cos(3#)  = (9 - m2)2(9 - 25m z -  24k2) /729  (4.5b) 

There  are three values of  ~cos/~ that are consistent with (4.5). These 

~ cos/~ = (9 - m 2 ) / 9  (4.6a) 

~cos /#  = - ( 9 -  m2) /18  - (w6'/2/9)(9 - m2) 1/2 (4.6b) 

~ cos/ t"  = - ( 9 -  m2) /18  + (w61/2/9)(9-  m2) 1/2 (4.6c) 

where we have used 

w = ( k 2 + m 2 )  1/2 (4.7) 

If  we fix the algebraic sign of A3 sin(3/0 through 

?~3 sin(3#) = w23/2(9 - m2)3/2(27 - 11 m 2 -  8k2) /729  (4.8) 

which is consistent with (4.5), we f ind 

)t sin bt = (w23/2/9)(9 - m2) I/2 (4.9a) 

X sin/~' = - (w2'/2/9)(9 -- m2)1/2 + 3 ' /2(9 - m2)/18 (4.9b) 

sin/~" = - (w2'/2/9)(9 - m 2) ,/2 _ 31/2(9 - m2)/18 (4.9c) 

Figure 1 is a plot of cos(3/Q against m, with kz=O and with the 
assumpt ion that ?~ is positive. The m i n i m um  in the curve, where cos(3#) 
reaches - 1, comes at a mass value of 

9 / 3 3  ' /2- -  1.5666989 (4.10) 

In  Figure 2 the rest-system curve of Figure 1 is repeated, together with 
similar curves in which the m o m e n t u m  is nonzero.  All of  the curves 
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Fig. 1. Plot of cos(3/~) as a function of m, for k2=0.  
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Fig. 2. Plot of cos(3#) as a function of m, for various values of k 2. These values, some of 
which are indicated on the figure, are 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 10, 
15, 20, 25, 50, 75, 100. 
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approach cos(3/~)= 0 as m approaches 3. This value of m is the upper limit 
for the mass (in units of ~) for the three-quantum structure. There is a 
similar upper limit at m = N for the N-quantum structure. Above this limit 
the N quanta could no longer float on the surface of the vacuum sea. 

For small momenta, the curves of Figure 2 are all tangent to the line 
at cos(3#)= - 1 .  At no time does any one of these curves move above or 
below the region from - 1  to + 1, and this is one justification for the 
trigonometric way in which the parameter/~ was introduced into equation 
(3.4). 

5. SUMMARY 

The secular equation (4.3) has been developed from the centroid-time 
wave equation (2.8a) for the three-quantum system. From this secular 
equation, together with the requirement that the structure move as a 
particle subject to the relativistic equation (4.4), the two auxiliary condi- 
tions (4.5) have been derived. 

As we will see in later articles, the solution to (2.8a) is an infinite 
expansion, but the conditions (4.5) permit us to replace the coefficients of 
high-order terms by multiples of a small, finite set of low-order 
coefficients. The wave equations (2.8) then take the form of a set of linear 
homogeneous equations in this small set of coefficients. Solutions are 
found only for certain discrete values of the rest mass m. 
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